ELK8.x使用详解

下载安装文件

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.11.3-linux-x86_64.tar.gz //elasticsearch安装文件
wget https://release.infinilabs.com/analysis-ik/stable/elasticsearch-analysis-ik-8.11.3.zip //ik分词器,解析放在elasticsearch的plugin目录下

创建目录

mkdir -p /home/atc/data/es/data
mkdir -p /home/atc/data/es/logs

修改配置参数

sudo vi /etc/security/limits.conf
soft   nofile  65535
hard   nofile  65535
soft   nproc   32000
hard   nproc   32000
sudo vi /etc/sysctl.conf
vm.max_map_count=262144
cluster.name: es
node.name: node-25
node.roles: [master,data]
path.data: /home/atc/data/es/data
path.logs: /home/atc/data/es/logs
network.host: 0.0.0.0
network.publish_host: 192.28.7.25
http.port: 9200
transport.port: 9300
# 集群安装
cluster.initial_master_nodes: ["192.28.7.25:9300","192.28.7.26:9300","192.28.7.27:9300"]
discovery.seed_hosts: ["192.28.7.25:9300","192.28.7.26:9300","192.28.7.27:9300"]
http.cors.enabled: true
http.cors.allow-origin: "*"
action.destructive_requires_name: false
bootstrap.memory_lock: false
#自动创建索引
action.auto_create_index: true
xpack.security.http.ssl.enabled: false
xpack.security.enabled: false
xpack.security.transport.ssl.enabled: false
# 调整JVM参数,编辑config/jvm.properties

-Xms8g
-Xmx8g

到elastic search的bin使用命令./elasticsearch -d 启动,用户不能使用root用户。

ES基础概念

  1. 索引(Index):类比关系数据库的表
  2. 映射(Mappings):类比关系数据库表的字段类型定义
  3. 文档(Document):类比关系数据库表中的一行数据
  4. 字段(Field):类别关系数据库中的一列
  5. 分片(Shards):把索引的数据分块存储在不同的数据块,一个多分片的索引中写入数据时,通过Id的hash值除分区数取余来确定具体写入哪一个分片中,所以在创建索引的时候需要指定分片的数量,并且分片的数量一旦确定就不能修改
  6. 副本(Replicas):分片的备份,做数据冗余,最多配置集群的N-1,因为分片与副本放在一起就失去了意义

Kibana Devtools使用

索引管理

  1. 查询所有索引
GET _cat/indices?v
  1. 查询单个索引信息
GET /track?pretty
  1. 删除索引,索引被删除后,文档数据信息也被删除了
delete /track
  1. 创建索引,主要是settings与mappings设置
    mappings常用的数据类型:
    • keyword通常用于未分词的字符串类型,不进行全文索引, -
    • date日期类型,支持时间格式yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis
    • text文本类型,会进行分词处理,执行文本搜索,不支持排序和聚合操作
    • boolean ,存储布尔值
    • Object表示json对象,被嵌套的对象被扁平化索引,Nested,允许你对嵌套对象数组中的每个对象单独进行索引,从而能够执行更精确的查询
    • long,integer,short,byte,double,float数值型,支持范围查询与聚合
    • ip类型,支持ipv4,ipv6地址
    • completion,用户自动补全建议
    • geo_point,存储地理位置坐标,支持基于地理位置的查询,比如距离计算、边界框查询等,对象形式({"lat": 41.12, "lon": -71.34})、字符串形式("41.12,-71.34")、数组形式([-71.34, 41.12])、geohash形式("drm3btev3e86")
    • geo_shape 类型允许你存储复杂形状(如多边形或多线),并执行与这些形状相关的查询,如相交、包含

以下是创建一个飞行器轨迹索引

PUT /track
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 2
  },
  "mappings": {
    "properties": {
      "orderId":{
      	"type":"keyword"
      },
      "sn": {
        "type": "keyword"
      },
      "flightStatus":{"type":"keyword"},
      "manufacturerID": {"type": "keyword"},
      "uasID": {"type": "keyword"},
      "timestamp": {
        "type": "date",
        "format":"epoch_millis"
      },
      "uasModel": {"type": "text","analyzer": "ik_max_word"},
      "coordinate": {"type": "integer"},
 	  "latitude": {"type": "float"},
      "heightAltitype": {"type": "integer"},
      "height": {"type": "integer"},
      "altitude": {"type": "integer"},
      "vS": {"type": "integer"},
      "gS": {"type": "integer"},
      "course": {"type": "integer"},
      "uavAuthInfo": {
      	"type":"nested",
        "properties": {
          "uavState": {"type": "keyword"},
          "uavType": {"type": "keyword"},
          "uavCategory": {"type": "keyword"},
          "uas": {"type": "keyword"},
          "uavName": {"type": "text","analyzer": "ik_max_word"},
          "uavModel": {"type": "text","analyzer": "ik_max_word"},
          "uavManufacturer": {"type": "text","analyzer": "ik_max_word"},
          "uavEmptyWeight": {"type": "float"},
          "uavMaxWeight": {"type": "float"},
          "uavUserType": {"type": "keyword"},
          "uavPerson": {
          	"properties":{
          		"name":{"type":"text","analyzer": "ik_max_word"},
          		"iDType":{"type":"keyword"},
          		"iDNumber":{"type":"text","analyzer": "ik_max_word"},
          		"phoneNumber":{"type":"text","analyzer": "ik_max_word"}
          	}
          },
          "uavUnit": {
            "properties": {
              "usccode": {"type": "keyword"},
              "unitType": {"type": "keyword"},
              "unitName": {"type": "text"},
              "phoneNumber": {"type": "text","analyzer": "ik_max_word"}
            }
          }
        }
      },
      "originTimeStamp": {"type": "date", "format": "yyyyMMddHHmmss"},
      "mockClock": {"type": "date", "format": "yyyy-MM-dd HH:mm:ss"},
      "packetTime": {"type": "date", "format": "yyyy-MM-dd HH:mm:ss"},
      "location": {
        "type": "geo_point"
      }
    }
  }
}

数据查询

  1. term精准匹配
GET track/_search
{
"query":{
"term": {
"sn": "1581F6Z9C2443003R69X"
}
}
}
  1. terms条件为多个
GET track/_search
{
"query":{
"terms": {
"sn": [
"1581F6Z9C2443003R69X","3N34K7E002N0GN"
]
}
}
}
  1. 嵌套查询
GET track/_search
{
"query":{
"nested": {
"path": "uavAuthInfo",
"query": {
"match": {
"uavAuthInfo.uavManufacturer": "深圳"
}
}
}

}
}
  1. 分析指定字段分词查询结果
POST /track/_analyze
{
"field":"orderId",
"text":"1581F45TB21AU1AE00AD-20241030-1Z43Cgd4"
}
  1. match_phrease分词结果全部满足,使用slop调节因子,指定少几个也行
GET track/_search
{
"query":{
"nested": {
"path": "uavAuthInfo",
"query": {
"match_phrase": {
"uavAuthInfo.uavManufacturer": {
"query":"深圳大疆",
"slop":1
}
}
}
}

}
}
  1. 其中有字段匹配上就行
{
  "query":{
    "multi_match": {
      "query": "大疆",
      "fields": ["title","content"]
    } 
  }
}

完全匹配上的评分更高

{
  "query": {
    "multi_match": {
      "query": "大疆",
      "type": "best_fields",
      "fields": [
        "tag",
        "content"
      ],
      "tie_breaker": 0.3
    }
  }
}

匹配字段越多,评分越高

{
  "query": {
    "multi_match": {
      "query": "大疆",
      "type": "most_fields",
      "fields": [
        "tag",
        "content"
      ]
    }
  }
}
大疆分词结果是分词在不同的字段中,评分越高
{
  "query": {
    "multi_match": {
      "query": "大疆",
      "type": "cross_fields",
      "fields": [
        "tag",
        "content"
      ]
    }
  }
}
  1. 联合查询
    must: 文档必须完全匹配条件
    should: should下面会带一个以上的条件,至少满足一个条件,这个文档就符合should
    must_not: 文档必须不匹配条件
    filter: 过滤满足条件数据
GET track/_search
{
  "query":{
    "bool": {
      "must":{
        "term":{
          "orderID":"1581F45TB21AU1AE00AD-20241030-1Z43Cgd4"
        }
      },
      "must_not":
        {
          "match":{
            "uasModel":"UNKONWN"
          }
        },
    "filter": {
        "range": {
          "height": {
            "gte": 20,
            "lt": 30
          }
    }
    }
  }
}
  1. 通配符,应用keyword类型字段
GET track/_search
{
  "query":{
    "wildcard": {
      "orderID":{
        "value":"1*"
      }
    }
  }
}
  1. sort排序
GET track/_search
{
  "query":{
    "wildcard": {
      "orderID":{
        "value":"1*"
      }
    }
  },
  "sort":[
    {
      "flightStatus":{
        "order":"desc"
      }
    }
  ]
}

10、 分页查询,默认最多大小不能超过1w

GET track/_search
{
  "query":{
    "wildcard": {
      "orderID":{
        "value":"1*"
      }
    }
  },
  "sort":[
    {
      "flightStatus":{
        "order":"desc"
      }
    }
  ],
  "from":0,
  "size":1000
}
  1. GIS点在范围内
GET /poi/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address":"南京南站"
          }
        },
        {
          "geo_bounding_box": {
            "location": { // 确保将这里的"location"替换为你的地理点字段名
            "top_left": {
              "lat":  31.99,
              "lon":118.77
            },
            "bottom_right": {
              "lat": 31.96,
              "lon": 118.86
            }
            }
          }
        }
        ]
    }
  }
}
GET /poi/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address":"南京"
          }
        },
        {
          "geo_distance": {
            "distance": 1000,
            "location": {
              "lat": 31.96,
              "lon": 118.86
            }
          }
        }
      
        ]
    }
  }
}

logstash使用

运行bin/logstash -f config/logstash.conf,以下示例时抓取kafka数据到elasticsearch中


input {
kafka {
bootstrap_servers => "192.28.7.25:9092,192.28.7.26:9092,192.28.7.27:9092"
topics => ["RECV_UAV_TRACK_FROM_UOM_V1"]
group_id => "g-es-track"
auto_offset_reset => "latest"
decorate_events => false
codec => json
}
}
filter {
mutate {
add_field => {
"[location][lat]" => "%{[latitude]}"
"[location][lon]" => "%{[longitude]}"
}
}

# 将经纬度从整数转换为浮点数

mutate {
convert => {
"location.lat" => "float"
"location.lon" => "float"
}
}

//如果需要的话,可以在这里添加更多的数据处理逻辑

//比如对经纬度进行除以10^6的操作来得到正确的坐标值

ruby {
code => "
event.set('[location][lat]', event.get('[location][lat]').to_f / 10000000)
event.set('[location][lon]', event.get('[location][lon]').to_f / 10000000)
"
}
}
output {
elasticsearch {
hosts => ["http://192.28.7.27:9200"]
index => "track"
manage_template => false #禁用自动索引
#user => "elastic"
#password => "changeme"
}

增量同步Mysql数据到ES中


input {
jdbc {
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_driver_library => "/home/atc/weblib/mysql-connector-java-8.0.11.jar"
jdbc_connection_string => "jdbc:mysql://192.28.7.21:3306/daas?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowLoadLocalInfile=false&autoDeserialize=false"
jdbc_user => "username"
jdbc_password => "password"
jdbc_paging_enabled => "true"
jdbc_page_size => "50000"
statement => "select id,name,address,province ,city,area,lat,lng,first_catename as firstCatename,second_catename  as secondCatename,third_catename as thirdCatename,third_cateid as thirdCateid,create_time,update_time as updateTime,is_deleted as isDeleted from daas.gis_poi  where create_time >= :sql_last_value"
schedule => "* * * * *"
record_last_run => true
last_run_metadata_path => "/home/atc/log/web_log/last_run_metadata_update_time.txt"
clean_run => false
tracking_column_type => "timestamp"
use_column_value => true
tracking_column => "create_time"
}
}
filter {
mutate {
add_field => {
"[location][lat]" => "%{[lat]}"
"[location][lon]" => "%{[lng]}"
}
}
date {
match => [ "create_time", "yyyy-MM-dd'T'HH:mm:ss.SSSZ" ]
target => "createTime"
}

# 将经纬度从整数转换为浮点数

mutate {
remove_field => ["create_time"]
convert => {
"location.lat" => "float"
"location.lon" => "float"
}
}
}
output {
elasticsearch {
hosts => "http://192.28.7.27:9200"
index => "poi"
document_id => "%{id}"
}
}

文章作者: 热心网民詹Sir
本文链接:
版权声明: 本站所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 编程之家
ELK elasticsearch kibana logstash
喜欢就支持一下吧